分子机器的概念 concepts for Molecular Machines
作者:Jubaraj Bikash
Baruah
出版社:World Scientific
索书号:Q7-B295-2018-Y
ISBN:9789813223707
藏书地点:武大外教中心
分子机器,指由分子尺度的物质构成、能行使某种加工功能的机器,其构件主要是蛋白质等生物分子。因其尺寸多为纳米级,又称生物纳米机器,具有小尺寸、多样性、自指导、有机组成、自组装、准确高效、分子柔性、自适应、仅依靠化学能或热能驱动、分子调剂等其他人造机器难以比拟的性能,因此研究生物纳米机器具有重大意义。它可以促进生物学发现,深入认识蛋白质分子机器机制,开发生物分子机器和促进仿生学发展。分子机器的动力来源主要有化学驱动、电驱动和光驱动。比如ATP合成酶转子是由于质子的流动而旋转,这属于化学驱动;索烃是由于铜离子电子的得失而行使其功能,属于电驱动;而分子蠕虫的“前进”是光照引起了偶氮分子构象的改变引起的,这属于光驱动。1979年 日本崇城大学的超分子化学家新海征治SeijiShinkai实现了第一例光控的“分子纳米机器”。1983年 Sauvage首次使用金属模板法诱导索烃的合成。1994年 Sauvage合成了一例可以依靠电化学进行旋转驱动的索烃。从上世纪90年代起,法国图卢兹材料设计和结构研究中心就已着手研制分子机器。1998年成功合成平面分子车轮;2005年首次研制出分子发动机;2007年研制出的“分子轮”是第一台真正的分子机器。这个非常奇特的分子包括2个直径为0.7纳米,由三苯甲基分子组成,被固定在长0.6纳米的轴上的“车轮”。所有分子机器的化学结构均被固定在铜基上。研究人员确信,“分子轮”将在复杂的纳米机器如分子卡车和分子纳米机器人等领域占有重要位置,可用于在人体细胞内清除病灶、充当药物运输的人造载体及形成分子阀门等。
从分子机器人能够在生物体内自动生成来设想,其最初的应用似乎应是以医疗等领域为中心。比如针对病毒的分子机器人,也许可以通过研发分子钳予以实现。加工分子钳前端的部件,使它只能与特定的病毒相结合。而且,可以利用分子钳那样的分子机器人,向癌肿部位集中送达药剂等。 随着生物技术水准的迅速进步,这样的生物技术药物可能会很快地代替现有药物,为人类创造更好的福祉,可是这些构建出来的融合蛋白还远远未能表达出人们所企求的结构和功能水准——人工多结构域“蛋白质机器”所应该具有的理想境界,充其量它们只能算作是蛋白质分子机器的一个雏形。现在,正有科学家试图把如此重要的机械在分子尺寸上组装起来,制造一种极其微小的装置,科学家意图使用这种装置来操控别的分子,运用于医学可以用来清除肌体深处的病毒、癌细胞等,它们具有不可限量的应用前景。目前,不少国家纷纷制定相关战略或者计划,投入巨资抢占分子机器人这种新科技的战略高地。《机器人时代》月刊日前指出:分子机器人潜在用途十分广泛,其中特别重要的就是应用于医疗和军事领域。每一种新科技的出现,似乎都包涵着无限可能。用不了多久,个头只有分子大小的神奇分子机器人将源源不断地进入人类的日常生活。
光化学的定义有不同的表述。C. H. Wells认为,光化学研究的是“吸收了紫外光或可见光的分子所经历的化学行为和物理过程”。N. J. Turro则认为“光化学研究的是电子激发态分子的化学行为和物理过程”。由于电子激发态通常由分子吸收紫外光或可见光形成,所以上述两种定义的实质是一样的。光化学是研究光与物质相互作用所引起的永久性化学效应的化学分支学科。由于历史的和实验技术方面的原因,光化学所涉及的光的波长范围为 100~1000纳米,即由紫外至近红外波段。比紫外波长更短的电磁辐射,如X或γ射线所引起的光电离和有关化学属于辐射化学的范畴。至于远红外或波长更长的电磁波,一般认为其光子能量不足以引起光化学过程,因此不属于光化学的研究范畴。观察到有些化学反应可以由高功率的红外激光所引发,但将其归属于红外激光化学的范畴。美国ace glass 光化学反应系统光化学过程可分为初级过程和次级过程。初级过程是分子吸收光子使电子激发,分子由基态提升到激发态,激发态分子的寿命一般较短。光化学主要与低激发态有关,激发态分子可能发生解离或与相邻的分子反应,也可能过渡到一个新的激发态上去,这些都属于初级过程,其后发生的任何过程均称为次级过程。例如氧分子光解生成两个氧原子,是其初级过程;氧原子和氧分子结合为臭氧的反应则是次级过程,这就是高空大气层形成臭氧层的光化学过程。分子处于激发态时,由于电子激发可引起分子中价键结合方式的改变,使得激发态分子的几何构型、酸度、颜色、反应活性或反应机理可能和基态时有很大的差别,因此光化学反应比热化学反应更加丰富多彩。
光化学反应已经广泛用于合成化学,由于吸收给定波长的光子往往是分子中某个基团的性质,所以光化学提供了使分子中某特定位置发生反应的最佳手段,对于那些热化学反应缺乏选择性或反应物可能被破坏的体系,光化学反应更为可贵。大气污染过程也包含着极其丰富而复杂的光化学过程,例如氟里昂等氟碳化物在高空大气中光解产物可能破坏臭氧层,产生臭氧层“空洞”。由于吸收给定波长的光子往往是分子中某个基团的性质,所以光化学提供了使分子中某特定位置发生反应的最佳手段,对于那些热化学反应缺乏选择性或反应物可能被破坏的体系更为可贵。光化学反应的另一特点是用光子为试剂,一旦被反应物吸收后,不会在体系中留下其他新的杂质,因而可以看成是“最纯”的试剂。 如果将反应物固定在固体格子中,光化学合成可以在预期的构象(或构型)下发生,这往往是热化学反应难以做到的。例如马来酸与富马酸的二聚体的固态光合成,以及在冠醚和β-环糊精中的光定向合成,都获得成功。
《分子机器的概念》一书于2018年World Scientific出版,作者为Jubaraj Bikash
Baruah。
《分子机器的概念》一书主要向读者讲述了分子机器,重点有分子机器的介绍;分子机器的运行情况;作为分子机器的联锁系统;光化学和电子化学指导的分子机器; 以DNA为基础的人造分子机器。
《分子机器的概念》是一本为大家介绍分子机器的专业书籍,内容详实,引用众多文献,严谨专业,除此之外还有以下特点:
1、本书不仅仅是介绍分子机器的基本概念知识,而且将分子机器与化学结合起来。让读者在理论上对分子机器有了更高层次的理解。
2、索引文献丰富,证明了这本书的知识性,真实性。而且,这些索引文献绝大部分都是最新研究,这就是这本书与世界最新研究同步,让读者全面了解该领域的前沿进展。
3、在本书的最后,将出现的专业词汇都罗列出来,并予以注解,大大方便了大家对阅读过程中对分子机器研究的专业术语的认知。
本书目录
章节1 分子机器的介绍。
章节2 分子机器的运行情况。
章节3 作为分子机器的联锁系统。
章节4 光化学和电子化学指导的分子机器。
章节5 以DNA为基础的人造分子机器。